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Abstract 
The use of regression analysis is 
common in research. This article 
presents an introductory section that 
explains basic terms and concepts 
such as independent and dependent 
variables (IVs and DVs), covariates 
and confounds, zero-order 
correlations and multiple correlations, 
variance explained by variables and 
shared variance, bivariate and 
multivariable linear regression, line 
of least squares and residuals, 
unadjusted and adjusted analyses, 
unstandardized (b) and standardized 
(β) coefficients, adjusted R2, 
interaction terms, and others. Next, 
this article presents a more advanced 

section with the help of 3 examples; 
the raw data files for these examples 
are included in supplementary materials, 
and readers are encouraged to 
download the data files and run the 
regressions on their own in order to better 
follow what is explained in the text (this, 
however, is not mandatory, and readers 
who do not do so can also follow the 
discussions in the text). The 3 examples 
illustrate many points. When important 
covariates are not included in regressions, 
the included IVs explain a smaller 
proportion of the variance in the DV, and 
the relationships between the included 
IVs and the DV may not be correctly 
understood. Including interaction terms 
between IVs can improve the explanatory 
value of the model whether the IVs are 

intercorrelated or not. When IVs are 
intercorrelated (such as when one is a 
confound), although their net effect in 
multivariable regression may explain a 
greater proportion of the variance in the 
DV, their individual b and β coefficients 
decrease in proportion to the shared 
variance that is removed. Thus, variables 
that were found statistically significant in 
unadjusted analyses may lose statistical 
significance in fully adjusted analyses. 
Readers may find it useful to keep these 
points in mind when running regressions 
on their data or when reading studies that 
present their results through 
regressions. 
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I n observational studies, and occasionally in 
randomized controlled trials, as well, data are 
analyzed using linear, logistic, proportional hazards, 

and other models of regression. This article presents a 
brief, noncomprehensive explanation about variables, 
correlation, and regression and uses dummy data files 
to illustrate what happens when covariates and 
confounds are included in regressions. 

Readers who are knowledgeable about statistics 
and research methods may wish to skip directly to 
the 3 examples discussed in this article. All readers 
will appreciate the points made in this article best if 
they run the regressions themselves; the dummy 
data files are provided as Supplementary Materials. 
Authors are also encouraged to read the articles 
cited in the references because these provide more 
detailed discussions on what is explained in this 
article. 

Basic Concepts: Variables 
Research is usually conducted to examine hypotheses, 

and hypotheses usually examine relationships between 
variables. A research study may include one or more 
independent variables (IVs), such as risk factors, and 
one or more dependent variables (DVs), such as the 
outcome(s) of interest. As an example, a study may 
examine whether gestational exposure to valproate (the 
IV) increases the risk of major congenital malformations 
in offspring (the DV). Or, a study may examine how 
antidepressant drugs and psychotherapy (IVs) reduce 
depression and suicidality (DVs) in adolescents with 
major depressive disorder. The IVs identified in these 
examples are the “IVs of interest” because they are part 
of the hypotheses being studied.1,2 

Research usually includes dozens of IVs beyond the 
IVs of interest; these IVs are the sociodemographic 
variables, clinical variables, and other variables that are 
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relevant to the subject of study. Many of these IVs 
merely describe the sample so that the reader can 
understand to what population the findings of the study 
may be generalized. Others may be included in 
inferential statistical analysis because they have potential 
to influence the outcome; these variables are called 
covariates. Thus, covariates are IVs that are studied 
along with the IV of interest and are “adjusted for” when 
examining the effect of the IV of interest on the DV.3 

As an example, we notice that words are produced 
by the mouth and that the mouth contains teeth. So, we 
decide to study whether the number of teeth (IV) that 
a preschooler’s mouth contains predicts the child’s 
vocabulary (DV). In this analysis, socioeconomic status 
is a possible covariate because preschoolers from higher 
socioeconomic strata may have better opportunities to 
learn new words; so, when examining the association 
between teeth and vocabulary, we must “adjust” the 
analysis for socioeconomic status. Enrollment vs no 
enrollment in preschool may likewise be included as a 
covariate in this analysis. A single analysis may include 
many covariates. 

We also realize that older children have had more 
time and opportunity to learn words and that older 
children also have more teeth. We wonder whether our 
hypothesized relationship between number of teeth and 
vocabulary is explained by age. We therefore add age to 
our list of covariates in the analysis. Here, age is a 
confounding variable. In explanation, a confounding 
variable is a special kind of covariate; it is correlated with 
both the IV and the DV and can at least partly explain 
the association between the IV and the DV.3,4 

Basic Concepts: Correlation 
Relationships between variables can be studied in 

many ways, such as by using correlation and regression. 
Correlation tells us the strength of relationship between 
variables, and regression quantifies the relationship. 

As an example, we might find that there is a strong 
positive correlation between the number of teeth in the 
mouth and the number of words a preschooler knows; 
the correlation coefficient, r, is (for example) 0.72. We 
are impressed, because the maximum value for a 
(positive) correlation is 1.00, and because we seldom 
observe r values >0.80 in real world research. We are 
also impressed because the square of the correlation 
coefficient gives us the variance explained in the DV, 
and because (0.72)2 is 0.5184, or 51.84%; that is, in our 
fictitious example, teeth predict an impressive 52% of the 
variance in a preschooler’s vocabulary. 

As a side note, variance is a technical concept that (in 
this example) quantifies the extent to which the 
vocabulary of individuals in the sample differs from the 
average of the sample. Less technically, variance 
quantifies the scatter in vocabulary scores. The 

maximum explainable variance is 100%. In real life 
research, even with a whole bunch of IVs, we are 
seldom able to explain more than 70%–80% of the 
variance in a DV. 

As a second side note, the variance in Vocabulary 
explained by Teeth is identical to the variance in Teeth 
explained by Vocabulary. This is because correlation does 
not imply cause and effect, and so does not specify a 
direction; for all we know, in our fictious study, increasing 
vocabulary can stimulate the growth of new teeth. This 
sounds absurd in our deliberately absurd example but can 
be a source of much misunderstanding in real research 
where cause-effect relationships are sought in correlation 
and regression analyses. 

As a final side note, correlation between 2 variables, 
or bivariate correlations, are also called zero order 
correlations. In such correlations, the variance that each 
variable explains in the other is called shared variance. 

Basic Concepts: Bivariate Linear Regression 
Regression uses the study data to derive a formula 

that allows us to predict the value of a DV (eg, the 
outcome) given the values of one or more IVs (eg, 
the risk factor[s]). In this derived formula, each IV is 
assigned a coefficient that tells us by how much the 
value of the DV changes per unit change in the IV; 
in our fictitious study, we might find that with each 
additional tooth, a child’s vocabulary increases by 
100 words. 

There are many kinds of regression. One is bivariate 
linear regression, where the relationship between one IV 
and one DV (2 variables; hence “bivariate”) is modelled 
as a straight line. We know from our schooldays math 
that, on a graph, the equation for a straight line is as 
follows: 

y ¼ a þ bx 

This equation is the simplest example of a regression 
equation. In this equation, y is the value of the DV for 
a subject, x is the value of the IV for that subject, and a 
and b are constants the values of which are the same for 
all subjects. 

As a side note, in the equation, a is the intercept; that 
is, the value of y when x = 0. So, a is the point at which 
the regression line meets the y-axis. The value of the 
intercept is an indication of the extent to which y does 
not depend on x. In the equation, b is the slope of the 
regression line; the larger the value of b, the greater the 
value of y, and hence the steeper the slope. 

Table 1 presents the weight and height data for 
7 imaginary subjects. If we model these data using linear 
regression, with the intent to predict a subject’s height 

Posting of this PDF is not permitted. | For reprints or permissions, contact 
permissions@psychiatrist.com. | © 2024 Physicians Postgraduate Press, Inc. 

2 J Clin Psychiatry 85:4, December 2024 | Psychiatrist.com 

Chittaranjan Andrade 

mailto:permissions@psychiatrist.com
https://www.psychiatrist.com/jcp
https://www.psychiatrist.com


(y) given that subject’s weight (x), we get the following 
regression equation: 

y ¼ 125 þ 0:5x 

We can confirm that this equation is correct when we use 
it to find the value for height by substituting for x any 
value for weight in Table 1. 

As a side note, if we use this equation to estimate 
height from values of weight that lie outside the range 
of weights in Table 1, we might get absurd values for 
height. This illustrates the dangers of extrapolation 
beyond the range of observed values. 

The data in Table 1, when plotted on a graph, lie along a 
straight line; this is the regression line (Figure 1). Because 
the data in Table 1 were idealized, all the data points lie on 
the regression line. In real life, however, the display of our x 
and y variables is a scattergram with the data points untidily 
scattered on the graph sheet; the regression line is therefore 
mathematically derived as the line of least squares. 

As a technical note, in the scattergram of our data points 
for the x and y variables, the distance is measured 
between each data point and a straight line that is 
drawn through the scattergram. This distance (also 
known as the residual) is squared and the squares are 
averaged. The straight line that yields the least value 
for the average is the line of least squares, or the 
regression line. Expressed more simply, the regression 
line is the straight line passing through the scattergram 
that is closest to all the data points. 

Basic Concepts: Multivariable Linear 
Regression 

Multiple or multivariable linear regression differs 
from bivariate linear regression in that it includes more 
than one IV. So, the regression equation is as follows: 

y ¼ a þ b1x1 þ b2x2 þ b3x3 … þ bnxn 

In this equation, y is the DV, x1, x2, x3 … xn are the 
first, second, third, … nth IVs, a is a constant (the 
intercept), and b1, b2, b3 … bn are the constants (slopes) 
for the IVs x1, x2, x3 … xn. 

In multivariable regression, the line of least 
squares becomes multidimensional and can no longer 
be visualized or plotted on a 2-dimensional graph. 
Nevertheless, the concept is mathematically 
definable. 

The Regression Coefficients 
The b values are called b, B, or even β weights or 

coefficients with different terms used in different 
statistical articles, texts, and software programs. There 
are 2 values for these coefficients. One is the raw value 
and the other is the standardized value. 

The raw value is usually presented as a b or B value; 
the standardized value is usually presented as a β or 
standardized β value. The raw value bn tells us by how 
much y (the DV) changes per unit change in xn (IV); 
the standardized value βn tells us by how many 
standard deviations y (the DV) changes per SD change 
in xn (IV). Note that each b or β is relevant only to its 
x; that is, the b1 value applies to x1, the b2 value applies 
to x2, and so on, as in the formula in the previous 
section. 

Because the b values are in the units of the 
corresponding x variable, b values cannot be 
numerically compared across IVs. However, the 
(standardized) β units are in units of standard 
deviation and so these βs can be compared across IVs to 
allow us to understand which IV is influencing the DV 
more. Readers are reminded that the larger the value, 
the greater the effect. Readers may also note that a b 
value that is positive indicates that its IV is positively 
correlated with the DV whereas a b that is negative 
indicates that its IV is negatively correlated with 
the DV. 

Table 1. 
Hypothetical Data for Height and Weight 
Subject Weight (kg) Height (cm) 
1 50 150 

2 60 155 

3 70 160 

4 80 165 

5 90 170 

6 100 175 

7 110 180 

Figure 1. 
Relationship Between Weight (kg) and Height 
(cm) (Data from Table 1)a 
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aThis figure was produced using Line Graph Maker: https://linegraphmaker.co/. 
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R, R2, and Adjusted R2 

After the multivariable regression is run in the 
statistical program and the constant a is derived, and 
the b coefficients identified for each x variable, the 
predicted y value for each subject can be calculated 
using the regression formula (this does not actually 
need to be done, though) and compared with the 
actual value of y for that subject. The difference 
between the actual and the predicted values for a 
subject is the “residual” for that subject. We had 
encountered this term earlier; the ideal regression line 
or line of least squares is the line which has the lowest 
sum (or average) of residuals. 

The correlation between the actual values of y and the 
predicted values of y is represented by R; R (upper case), 
or the multiple correlation coefficient, is to multivariable 
regression as r (lower case) is to bivariate regression. R2 

in multivariable regression represents the variance in the 
DV explained by all the IVs in the equation much as r2 in 
bivariate regression represents the variance in the DV 
explained by the single IV in the equation. More 
important than R2, though, is adjusted R2, or aR2. The 
adjustment applies a correction to R2 for each IV in the 
equation; the larger the number of IVs, the greater the 
correction. Among the R, R2, and aR2 values that are 
included in the statistical software output, only aR2 is of 
interest to us. 

In the rest of this article, we will look at how IVs 
influence DVs before and after covariates and confounds 
are added. 

Example 1 
We examine data from an entertaining study in which 

48 young men were timed in a 100 m sprint. There 
were 12 men who ran without assistance; their timings 
lay in the 13.9–14.1 s range (mean, 14.0 s). There were 
12 men who drank a large cup of coffee an hour before 
the time trial; their caffeine-assisted timings lay in the 
13.5–13.7 s range (mean, 13.6 s). There were 12 men 
who did not drink coffee but who were unexpected chased 
by a bull; their bull-assisted timings lay in the 
13.5–13.7 s range (mean, 13.6 s). Finally, there were 
12 men who drank coffee as well as were chased by a bull; 
their caffeine- and bull-assisted timings lay in the 
13.5–13.7 s range (mean, 13.6 s). The data are 
summarized in Table 2. The complete (raw) dataset is 
presented in the Supplementary File 
JCPRegression1.xlsx; the first worksheet presents the 
data and the second worksheet, the coding details. 

From the above, we observe that, regardless of its 
source, assistance was associated with 100 m sprint 
timings that were a mean of 0.4 s less than the mean of 
the unassisted timings. We also observe that having 
2 sources of assistance was no better than having 1 source 
of assistance; perhaps, there was a ceiling effect to how 
fast those young men could run. 

Note that we do not infer cause-effect relationships. 
That is, we do not say that drinking coffee or being chased 
by the bull improved timings; rather, we say that such 
assistance was associated with faster timings. We use 
our words carefully because we did not study the same 
men in 4 different conditions (unassisted, caffeine- 
assisted, bull-assisted, and doubly assisted) nor were the 
men randomized to these 4 groups (but in the rest of this 
article, for simplicity, phrasing will imply cause and 
effect). 

Now, let us see what happens when we run the 
data in bivariate and multivariable regressions (readers 
are strongly encouraged to run the regressions 
themselves, using any appropriate statistical software 
and the JCPRegression1.xlsx data file, to better follow 
what is discussed; however, this is not mandatory). 

We start with a bivariate regression that examines 
how drinking coffee affects the sprint timings. The IV 
is Coffee, and the DV is Time. We run the regression and 
observe from the statistical software regression output 
that Coffee explains 25.7% of the variance in Time 
(aR2 = 0.257); this is a modest value but is impressive 
enough given that Coffee is a single variable. The 
variance explained is statistically significant (F = 17.25, 
df = 1,46, P < .001), and the β coefficient for Coffee 
(–0.522) is statistically significant, indicating that 
drinking coffee significantly improves sprint timing. 

The regression equation, obtained from the 
regression output, is as follows: 

Time ¼ 13:8–0:2ðCoffeeÞ

Coffee was coded as 0 = did not drink coffee and 
1 = did drink coffee. So, substituting 0 for Coffee in this 
equation tells us that, without coffee, the timing of the 
average sprinter was 13.8 s (value of the intercept). This 
surprises us because we know that the average unassisted 
sprint time was 14.0 s; how did it become 13.8 s? 

The answer is that, among the 24 sprinters who did 
not drink coffee, the average of 12 sprinters (no coffee, not 
chased) was 14.0 s and the average of the other 12 (no 
coffee, chased by the bull) was 13.6 s; so, the grand mean 
for the no coffee condition was 13.8 s. 

There is another surprise in this regression equation. 
The (unstandardized) b coefficient for Coffee is −0.2. That 
is, for every 1 unit increase in Coffee, Time decreases by 
a mean of 0.2 s. Because Coffee has only 2 values, 0 and 
1, it means that moving from no coffee to drinking coffee 
reduces the mean sprint time by 0.2 s. We are astonished 

Table 2. 
Means for Time in Example 1 

Did not use coffee Used coffee 
Was not chased 14.0 s (n = 12) 13.6 s (n = 12) 
Was chased 13.6 s (n = 12) 13.6 s (n = 12) 
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because we knew, a priori, that drinking coffee actually 
improved timings by a mean of 0.4 s. 

The explanation is that, among the 24 sprinters 
who drank coffee, whether or not they were chased, the 
mean sprint time was 13.6 s; but among those who did 
not drink coffee, as we noticed above, the mean sprint 
time was 13.8 s. So, the apparent benefit with coffee was 
only 0.2 s. 

The 2 surprises discussed above illustrate a large 
learning point. The regression equation fits the data, but 
the results are misleading because, if there is something 
going on in the data that we don’t know about, we don’t 
put it into the regression, and so we don’t get an accurate 
picture. The “something” in this bivariate analysis 
is Chased, a covariate. As a generalization, in clinical 
research, regression models that associate IVs with a 
DV may be inaccurate if we fail to identify and include 
relevant covariates. 

What happens if, instead of running a bivariate 
regression between Coffee and Time, we run the regression 
between Chased and Time? The findings are exactly the 
same because Chased and Coffee had exactly the same 
effects in the sample. So, the learning point is again 
the same. 

Bivariate regressions yield unadjusted estimates. The 
b values are the unadjusted estimates. We now recognize 
that unadjusted estimates can be misleading, and so we 
run the regression with both Coffee and Chased as IVs 
and with Time as the DV. This becomes a multivariable 
regression because there is more than 1 IV. 

As a side note here, if Coffee is our IV of interest, then 
Chased is the covariate that is adjusted for. If Chased is 
the IV of interest, Coffee becomes the covariate that is 
adjusted for. If we no idea what either of these IVs is 
doing in the data but want to find out, then both are IVs 
of interest in an exploratory regression. 

We observe from the multivariable regression 
statistical output that Coffee and Chased together 
explain 52.5% of the variance in Time (aR2 = 0.525); 
that’s impressive for just 2 variables. The variance 
explained is statistically significant (F = 27.00, 
df = 2,45, P < .001), and the β coefficients for Coffee 
(−0.522) and Chased (−0.522) are statistically 
significant, indicating that drinking coffee and being 
chased each significantly improved sprint timing. 

The multivariable regression equation is as follows: 

Time ¼ 13:9–0:2ðCoffeeÞ– 0:2ðChasedÞ

This multivariable regression tells us that the 
2 variables together explain more of the (aR2) variance 
in timings than either variable alone. We also see that 
the b and β coefficients are unchanged, indicating that 
neither variable undercuts the contribution of the other 
(this is because the correlation between Coffee and 

Chased is 0; readers are encouraged to run the 
correlation to see for themselves). 

Substituting 0 and 1 (in different combinations) for 
Coffee and Chased in this equation tells us that sprinters 
who did not drink coffee and were not chased ran the 
100 m in a mean of 13.9 s; that those who drank coffee 
but were not chased had a mean timing of 13.7 s; that 
those who were chased but did not drink coffee had a 
mean timing of 13.7 s; and that those who drank coffee 
as well as were chased had a mean timing of 13.5 s. The 
values are again not what we expect from what we know 
about the data, and the b coefficients are also not what 
we expect from what we know. 

Taking a step back, we realize that had we analyzed these 
data using 2-way analysis of variance, we’d have obtained F 
values for a main effect for Coffee, a main effect for Chased, 
and a Coffee × Chased interaction. Given that analysis of 
variance and linear regression are related concepts, we decide 
to create an interaction term (Inter) in the data. 

For readers who are also running the regressions 
while following this discussion, this new variable is 
represented by “Inter” in the data file, and the 
values for Inter were created by multiplying the values 
of Coffee and Chased. 

We now run the multivariable regression again, this 
time with Coffee, Chased, and Inter as the IVs and with 
Time as the DV. We observe from the regression 
output that Coffee, Chased, and Inter explain 80.6% of 
the variance in Time (aR2 = 0.806); that’s a very 
impressive proportion of the variance explained for 
any multivariable regression. The variance explained 
is statistically significant (F = 66.00, df = 3,44, P < .001), 
and the β coefficients for Coffee (−1.044), Chased 
(−1.044), and Inter (0.905) are statistically 
significant. 

The new multivariable regression equation is as 
follows: 

Time ¼ 14:0–0:4ðCoffeeÞ– 0:4ðChasedÞ

þ 0:4ðCoffee × ChasedÞ

Readers may now check for themselves and confirm 
that the new equation fits the data; the b coefficients are 
correct, and the value for each of the 4 conditions is 
correct when the appropriate substitutions are made for 
Coffee and Chased in the formula. 

So, another important learning point in Example 
1 is that interaction terms also contribute to variance 
explained in the DV, and including the interaction term 
improves the fit of the regression equation to the data. 
Readers who are puzzled about where the interaction 
came from will find the answer in Table 2. If the means 
are plotted on a graph, the interaction is evident from 
the differing slopes of the lines.5 
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Here is a summary of what we saw in Example 1. 
We had 2 IVs. The correlation between the IVs was 
zero. Each IV explained the same proportion of the 
variance in the DV, and there was no additive effect 
for an individual subject when the IVs were both 
present. We found that including both IVs in the 
same regression increased the proportion of the 
variance in the DV explained without diminishing the 
values of the b coefficients that were observed in 
separate (bivariate) regressions. We observed that we 
cannot interpret the results of the regression correctly 
when we leave out a covariate that significantly 
influences the DV. We observed that including the 
covariate also did not correctly describe the model. We 
found that including an interaction term along with 
the IVs best described the model. 

Example 2 
The data in the Supplementary File 

JCPRegression2.xlsx are the same as those in Example 
1 but with (only) 2 differences. First, drinking coffee 
had a smaller effect on the sprint timings. Second, 
sprint timings associated with both drinking coffee and 
being chased were slightly better than those associated 
with either condition alone. That is, the 2 conditions 
appeared to display a small additive effect (Table 3). 
Drinking coffee continued to show zero correlation 
with being chased. 

Readers are again (though not mandatorily) 
encouraged to run the regressions and view the results. 
Coffee explained 22.3% of the variance in sprint 
timings; Chased explained 53.0% of the variance; 
Coffee and Chased together explained 77.0% of the 
variance; and adding the Coffee × Chased interaction 
term to Coffee and Chased explained 82.9% of the 
variance. All of these 4 regressions explained 
statistically significant proportions of the variance 
in Time. 

The b coefficients were −0.2 and −0.3 for Coffee 
and Chased, respectively, with Time as the DV, and the 
coefficients were the same when these IVs were 
examined in separate (bivariate) regressions as well 
as when they were examined together in the same 
multivariable regression. The β coefficients also 
remained the same. However, the b coefficients 
were −0.3 and −0.4, respectively, when the interaction 
term was added to the regression, which, along with the 
intercept, reflected a good fit of the data (Table 3). 

In summary, in Example 2, the correlation between 
the IVs was zero. The IVs explained different proportions 
of the variance in the DV and together had a small 
additive effect. Including both IVs in multivariable 
regression expectedly increased the proportion of the 
variance in the DV explained. However, despite the 
differences in the effects of the IVs and despite the 
additive effects, including both IVs in the regression did 
not diminish the values of the b and β coefficients 
observed in the separate (bivariate) regressions. Adding 
the interaction term yielded the best fit for the data. 

Example 3 
The data in the Supplementary File 

JCPRegression3.xlsx describe much the same study as in 
Examples 1 and 2. The differences are that the sample 
size has increased, drinking coffee has a smaller effect 
than being chased, and drinking coffee does not add to the 
effect of being chased (Table 4). Importantly, the 
correlation between Coffee and Chased, although small 
and not statistically significant (r = 0.167, P = .20), is no 
longer zero. 

Running the regressions, as before, coffee alone 
explained 20.4% of the variance in sprint timings; Chased 
alone explained 48.0% of the variance; Coffee and 
Chased together explained 60.1% of the variance; and 
adding the Coffee × Chased interaction term to Coffee and 
Chased explained 77.1% of the variance. All of these 
were statistically significant. 

In independent (bivariate) regressions, the b 
coefficients were −0.167 and −0.25 for Coffee and Chased, 
respectively, with Time as the DV; however, when Coffee 
and Chased were included in the same regression, the b 
coefficients dropped to −0.129 and −0.229, respectively; 
the β coefficient values also fell. But, when the 
interaction term was included, the b coefficients rose 
to −0.3 and −0.4, respectively, which reflects what is seen 
in the data (Table 4). 

Why did the values of the b (and the associated β) 
coefficients decrease in the adjusted (multivariable) 
analysis? The answer is that whenever IVs are correlated, 
they share variance; this was explained in the Correlations 
section, early in this article. This shared variance is removed 
when the IVs are regressed together, leaving b coefficients 
that reflect the unique variance in the DV that each IV 
explains. The greater the correlation between IVs, the 
greater the shared variance removed, and hence the greater 
the fall in value of the b coefficients. One might therefore 

Table 3. 
Means for Time in Example 2 

Did not use coffee Used coffee 
Was not chased 14.0 s (n = 12) 13.7 s (n = 12) 
Was chased 13.6 s (n = 12) 13.5 s (n = 12) 

Table 4. 
Means for Time in Example 3 

Did not use coffee Used coffee 
Was not chased 14.0 s (n = 12) 13.7 s (n = 12) 
Was chased 13.6 s (n = 12) 13.6 s (n = 24) 
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expect that adjusting for confounds in regression could 
result in a substantial loss of explanatory power, and even 
loss of statistical significance, of IVs. This is because, by 
definition, confounds are variables that are correlated not 
only with the DV but also with the IV of interest.3,4 

In summary, in multivariable analyses, when IVs are 
even weakly and nonsignificantly correlated, including 
both/all in a multivariable regression increases the 
overall variance explained but reduces the b and β 
coefficients that they display in bivariate regressions. 

Take-Home Messages 
Although this article explains what happens in 

unadjusted (bivariate) and adjusted (multivariable) linear 
regressions when there are just 2 IVs, the conclusions 
can be generalized to multivariable regressions that 
include many IVs. When important IVs (covariates, 
confounds), for whatever reason, are not included in 
regressions, the included IVs explain less of the variance 
in the DV. More importantly, the relationships between 
the included IVs and the DV are inaccurately modelled. 
Including interaction terms between IVs can improve 
the model whether the IVs are intercorrelated or not. 
When IVs are intercorrelated, such as when one is a 
confounding variable, although their net effect in 
multivariable regression may explain a greater proportion of 
the variance in the DV, their individual b and β coefficients 
decrease in proportion to the shared variance that is 
removed. This is why variables that were (perhaps 
deservedly) statistically significant in unadjusted analyses 
sometimes lose statistical significance in adjusted analyses. 
Readers may find it useful to keep these points in mind 
when running regressions on their data or when reading 
studies that present their results through regressions. 

Parting Notes 
Whereas concepts were explained in this article 

using linear regression, the concepts can also apply to 

other forms of regression. For excellent and 
comprehensive discussions on regression, from 
enumeration of assumptions to understanding of 
results, readers are encouraged to refer to standard 
statistical texts.6,7 
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