Original Research March 20, 2018

Phenotypic Assessment of Drug Metabolic Pathways and P-Glycoprotein in Patients Treated With Antidepressants in an Ambulatory Setting

J Clin Psychiatry 2018;79(2):16m11387

This article is available to members only. Please enjoy the abstract for free. Subscribe for instant access to the full article.

Article Abstract

Objective: Drug-metabolizing enzymes (DMEs), such as cytochrome P450 (CYP) enzymes, and transporters have emerged as major determinants of variability in drug metabolism and response. This study investigated the association between CYP and P-glycoprotein activities and plasma antidepressant concentration in an outpatient clinical setting. Secondary outcomes were antidepressant efficacy and tolerance. We also describe phenotypes in patients treated with antidepressants and evaluate the tolerance of a minimally invasive phenotyping approach.

Methods: From January 2015 to August 2015, 64 patients on a stable antidepressant regimen underwent a simultaneous assessment of steady-state antidepressant concentration and DME (CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A) and P-glycoprotein transporter activity using a cocktail phenotyping approach. Psychiatric diagnoses were in accordance with DSM-5.

Results: We observed a high proportion of subjects (> 20%) with reduced activity of CYP2C19, CYP2D6, CYP3A4, and P-glycoprotein. As expected, higher CYP activity for major metabolic pathways was associated with lower concentration of the parent compound (CYP2C19 and escitalopram, P = .025; CYP2D6 and fluoxetine, P < .001; CYP2C19 and sertraline, P = .001), higher concentration of the metabolite (CYP2D6 and O-desmethylvenlafaxine, P = .007), and higher metabolite-to-parent drug ratio (CYP2C19 and escitalopram, P = .03; CYP2D6 and fluoxetine, P < .001; CYP2C19 and sertraline, P = .048; CYP2B6 and sertraline, P = .006). Phenotyping also highlighted the relevance of a minor metabolic pathway for venlafaxine (CYP3A4). Insufficient response and adverse reactions to antidepressants were not significantly associated with plasma antidepressant concentration, DME, or P-glycoprotein activity. Tolerance of the phenotypic test in ambulatory settings was found to be excellent.

Conclusions: The phenotypic assessment of DMEs and a transporter is a valuable, well-tolerated method to explore the interindividual variability in drug disposition in clinical settings. The method is able to account for the inhibitory activity of antidepressants themselves and for polymedication, which is frequent in this population of refractory depressed patients.

Trial Registration: ClinicalTrials.gov identifier: NCT02438072

Continue Reading...

Did you know members enjoy unlimited free PDF downloads as part of their subscription? Subscribe today for instant access to this article and our entire library in your preferred format. Alternatively, you can purchase the PDF of this article individually.

Subscribe Now

Already a member? Login

Purchase PDF for $40.00

Members enjoy free PDF downloads on all articles. Join today